Elasticity in drift-wave-zonal-flow turbulence.
نویسندگان
چکیده
We present a theory of turbulent elasticity, a property of drift-wave-zonal-flow (DW-ZF) turbulence, which follows from the time delay in the response of DWs to ZF shears. An emergent dimensionless parameter |〈v〉'|/Δωk is found to be a measure of the degree of Fickian flux-gradient relation breaking, where |〈v〉'| is the ZF shearing rate and Δωk is the turbulence decorrelation rate. For |〈v〉'|/Δωk>1, we show that the ZF evolution equation is converted from a diffusion equation, usually assumed, to a telegraph equation, i.e., the turbulent momentum transport changes from a diffusive process to wavelike propagation. This scenario corresponds to a state very close to the marginal instability of the DW-ZF system, e.g., the Dimits shift regime. The frequency of the ZF wave is ΩZF=±γd1/2γmodu1/2, where γd is the ZF friction coefficient and γmodu is the net ZF growth rate for the case of the Fickian flux-gradient relation. This insight provides a natural framework for understanding temporally periodic ZF structures in the Dimits shift regime and in the transition from low confined mode to high confined mode in confined plasmas.
منابع مشابه
Vorticity dynamics, Drift Wave Turbulence, and Zonal Flows: A Look Back and A Look Ahead
This paper surveys the basic ideas and results on fundamental models of drift wave turbulence, the formation of zonal flows, shear suppression of turbulence and transport, coupled drift wave and zonal flow dynamics, and application to transport bifurcations and transitions. Application to vortex dynamics and zonal flow phenomena in EMHD systems are discussed, as well. These are relevant to aspe...
متن کاملDynamics of Zonal Flows and Self-regulating Drift-wave Turbulence
We present a theory of zonal flow drift wave dynamics. Zonal flows are generated by modulational instability of a drift wave spectrum, and are damped by collisions. Drift waves undergo random shearing-induced refraction, resulting in increased mean square radial wavenumber. Drift waves and zonal flows together form a simple dynamical system, which has a single stable fixed point. In this state,...
متن کاملCoherent structure phenomena in drift wave-zonal flow turbulence
Zonal flows are azimuthally symmetric plasma potential perturbations spontaneously generated from small-scale drift-wave fluctuations via the action of Reynolds stresses. We show that, after initial linear growth, zonal flows can undergo further nonlinear evolution leading to the formation of long-lived coherent structures which consist of self-bound wave packets supporting stationary shear lay...
متن کاملVorticity dynamics, drift wave turbulence, and zonal flows
This paper surveys the basic ideas and results on fundamental models of drift wave turbulence, the formation of zonal flows, shear suppression of turbulence and transport, coupled drift wave and zonal flow dynamics and application to transport bifurcations and transitions. Application to vortex dynamics and zonal flow phenomena in EMHD systems are discussed, as well. These are relevant to aspec...
متن کاملBifurcation in electrostatic resistive drift wave turbulence
The Hasegawa-Wakatani equations, coupling plasma density, and electrostatic potential through an approximation to the physics of parallel electron motions, are a simple model that describes resistive drift wave turbulence. Numerical analyses of bifurcation phenomena in the model are presented, that provide new insights into the interactions between turbulence and zonal flows in the tokamak plas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 89 4 شماره
صفحات -
تاریخ انتشار 2014